BIOLOGY/SECONDARY MINOR

This minor satisfies the endorsement for grades 5-12.

Required Biology Courses

Total Credits		51
SCED 390	SCIENCE TEACHING METHODS	5
or MATH 380	ELEMENTARY PROBABILITY AND STATISTICS	
or MATH 141	PRECALCULUS I	
BIOL 380	DATA ANALYSIS FOR BIOLOGISTS	5
Required Supporting Courses		
BIOL 304	VERTEBRATE ZOOLOGY	
BIOL 303	INVERTEBRATE ZOOLOGY	
BIOL 302	BOTANY	
BIOL 301	MICROBIOLOGY	
Choose one of the following		5
BIOL 441	ECOLOGY LAB	2
BIOL 440	ECOLOGY	4
BIOL 423	EVOLUTION	5
BIOL 340	BIOETHICS	2
BIOL 310	FUNDAMENTALS OF GENETICS	5
BIOL 270	BIOLOGICAL INVESTIGATION	3
BIOL 173	BIOLOGY III	5
BIOL 172	BIOLOGY II	5
BIOL 171	BIOLOGY I	5

Students who earn a Biology/Secondary minor from EWU should be able to:

- explain the disciplinary core ideas of biology and guide the learning of others in key principles of biology outlined in the Next Generation Science Standards;
- · apply science and engineering practices in NGSS;
- incorporate instructional materials and teaching strategies to a community of diverse students;
- explain how cross-cutting ideas bridge disciplinary boundaries, uniting core ideas throughout the fields of science and engineering;
- appropriately respond to potential safety hazards in different learning environments, ,e.g., laboratory, classroom, field.